Cell culture platform with mechanical conditioning and nondamaging cellular detachment.

نویسندگان

  • Elaine L Lee
  • Horst A von Recum
چکیده

Cells implanted after injury may remodel undesirably with improper mechanical stimulation from surrounding tissue. Proper conditioning of tissue engineered constructs before implantation can lead to suitable tissue architectures, along with an extracellular matrix (ECM) environment that more closely mimics native tissue. Additionally, cell implantation without bulky polymeric scaffolding is often desirable. Previous researchers have created devices capable of applying mechanical forces to cells (e.g., stretch) but cellular removal from these devices, such as by trypsin, often results in irreversible damage. Conversely, devices are available that can detach intact cells, but these are inelastic, nonstretchable substrates. We have created a cell culture platform that allows for mechanical conditioning and then subsequent nondamaging detachment of those cells. We have modified silicone culture surfaces, to incorporate thermally responsive polymers of N-isopropylacrylamide (NIPAAm) to create an elastic substrate that can also change surface properties with temperature change. A copolymer of NIPAAm and 10percent w/w acrylic acid (AAc) was conjugated to an amine-bonded silicone surface through carbodiimide chemistry. Cells were able to attach to the resulting surfaces at 37 degreeC and showed detachment by rounded morphology at 25degreeC. Following mechanical stretching, cells were still able to spontaneously detach from these modified silicone surfaces with temperature change.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface modification of uniaxial cyclic strain cell culture platform with temperature-responsive polymer for cell sheet detachment.

Current cell sheet-based blood vessels lack biomimetic structure and require excessively long culture times that may compromise smooth muscle cell phenotype. We modified a commercially available product for uniaxial cell sheet conditioning with thermoresponsive copolymers. Thus, culture of detachable conditioned cell sheets is shortened while retaining structural integrity and contractility.

متن کامل

1 An Electromagnetically Actuated Double - Sided 2 Cell - Stretching Device for Mechanobiology Research 3

Cellular response to mechanical stimuli is an integral part of cell homeostasis. The 18 interaction of the extracellular matrix with the mechanical stress plays an important role in 19 cytoskeleton organisation and cell alignment. Insights from the response can be utilised to develop 20 cell culture methods that achieve predefined cell patterns, which are critical for tissue remodelling 21 and ...

متن کامل

A microfluidic platform for complete mammalian cell culture.

We introduce the first lab-on-a-chip platform for complete mammalian cell culture. The new method is powered by digital microfluidics (DMF), a technique in which nanolitre-sized droplets are manipulated on an open surface of an array of electrodes. This is the first application of DMF to adherent cell culture and analysis, and more importantly, represents the first microfluidic platform capable...

متن کامل

Mechanical Stress Promotes Maturation of Human Myocardium From Pluripotent Stem Cell-Derived Progenitors.

Recent advances in pluripotent stem cell biology and directed differentiation have identified a population of human cardiovascular progenitors that give rise to cardiomyocytes, smooth muscle, and endothelial cells. Because the heart develops from progenitors in 3D under constant mechanical load, we sought to test the effects of a 3D microenvironment and mechanical stress on differentiation and ...

متن کامل

A biological breadboard platform for cell adhesion and detachment studies.

The dynamic nature of cell adhesion and detachment, which plays a critical role in a variety of physiological and pathological phenomena, still remains unclear. This motivates the pursuit of controllable manipulation of cell adhesion and detachment for a better understanding of cellular dynamics. Here we present an addressable, multifunctional, and reusable platform, termed the biological bread...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 93 2  شماره 

صفحات  -

تاریخ انتشار 2010